REACTION OF 1-PHENYLCYCLOOCTENE WITH NBS. SYNTHESIS OF ALLYLIC ALCOHOLS AND 1,3-DIENES

Bülent Büyükkıdan,* İ. Gökay Budak, and Mustafa Ceylan
Department of Chemistry, Faculty of Science, Gaziosmanpasa University, 60240, Tokat, Turkey Fax: +90-3562521585, E-mail: bbuyuk@gop.edu.tr

Received 21-01-2003

Abstract

Reaction of 1-phenylcyclooctene (3) with NBS resulted in the formation of a mixture of products (4-8). After column chromatography, we isolated the vinyl bromide $\mathbf{1 4}$ and 1,3-dienes $\mathbf{9}, \mathbf{1 0}$, bromo-1, 3-dienes 11, 12 and allylic alcohol 15. Reaction of the mixture $(\mathbf{4 - 8})$ with AgClO_{4} afforded compounds $\mathbf{9}, \mathbf{1 4}, \mathbf{1 5}$ and α, β-unsaturated ketones 21 and 22.

Introduction

The unique symmetry of eight-membered rings and their intriguing conformational properties have attracted much theoritecal interest over years. The synthesis of compounds containing ring of this size has been a long-standing problem because of difficulties stemming from the high degree of ring strain and transannular interactions. ${ }^{1}$

In recent years, interest has grown considerably in the synthesis of eight-membered rings. ${ }^{2-4}$ In addition, the discovery of more than 100 cyclooctanoid-based sesqui-, di-, and sesterterpenes have spurred extensive activity in the total synthesis of this class of natural products. ${ }^{1}$

However, neither of these endeavours have provided the occasion for scrutinizing the degree to which an eight-membered ring can be functionalized without postering one or another unwanted transannular process. Paquette has reported ${ }^{4}$ that the derivation of cyclooctene gave the polybrominated products. In the present work, we investigated the reaction of 1-phenylcyclooctene (3) with NBS.

Results and discussion

In the present work we investigated the reaction of 1-phenylcyclooctene (3) with N-bromosuccunimide (NBS). Compound $\mathbf{3}$ was synthesized by the procedure described in literature. ${ }^{5}$ We used cyclooctanone (1) as a starting material. The reaction of $\mathbf{3}$ with

[^0]phenylmagnesium bromide was followed by dehydration with 4-toluenesulfonic acid (p-TsOH) resulted in cycloocten-1-ylbenzene (3) in good yield (Eq. 1).

The reaction of 3 with 1 equivalent of NBS was carried out in CCl_{4} at $65^{\circ} \mathrm{C}$. Examination of the reaction mixture by ${ }^{1} \mathrm{H}$ NMR spectroscopy revealed that many different compounds were indeed present in the reaction mixture. We determined that the five compounds were the allylic bromides $\mathbf{4 - 8}$, which are expected compounds, shown in Figure 1. Confirmation of the proposed structure for compounds $\mathbf{4 - 8}$ comes from the ${ }^{13} \mathrm{C}$ NMR study of the products (C-Br Shifts: $\delta 62.84,62.50,55.79,51.22$, $50.51 \mathrm{ppm})$. Additionally, from the proton NMR studies it was determined that the compounds 4 and 5 were the main products. Purification of the reaction mixture by column chromatography on silica gel did not lead to the isolation of these compounds.

4

5

6

7

8

Figure 1

Instead, after repeated column chromatography, we isolated compounds 9-13 and 15. These products were presumably formed from compounds 4-8 on silica gel during the chromatographic seperation (Scheme 1). The compounds 4-8 are moisture and heat sensitive and easily liberate bromine atom, and convert into the corresponding alcohols 15 and alkenes 9-12 on column material. In addition, the alkenes 9-12 can also be formed in the reaction medium. In Scheme 1 we also indicated that small amounts of saturated dibromide $\mathbf{1 4}$ were formed. The structure of $\mathbf{1 4}$ was elucidated from the NMR spectra and it was not isolated in a pure form since during the chromatographic separation 14 eluted together with the unreacted 3 .
B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..

3
NBS, CCl_{4}, reflux, silicagel

9, 18\%

13, 16\%

10, 10\%

14, 1\%

11, 10\%

12, 8\%
other products

8\%

Scheme 1

The structures of the isolated products $(\mathbf{9 - 1 3}, \mathbf{1 5})$ have been elucidated on the basis of NMR data and the chemical transformations. IR analysis showed that a hydroxyl group was incorporated into compound 15. Therefore, we assume that this product was formed by a partial hydrolysis of compound 4 . Compound $\mathbf{4}$ contains allylic bromine atom which can be easily hydrolized on column material to the corresponding alcohol 15 (Scheme 2). Similar rearrangements have been reported in the literature. ${ }^{5-7}$

Alcohol 15 was distinguished easily. The proton NMR spectrum of 15 showed the olefinic proton at $\delta 5.63 \mathrm{ppm}$, which arises as a triplet $(J=8.5 \mathrm{~Hz})$ and a proton (HC$\mathrm{OH})$ at $\delta 4.85 \mathrm{ppm}$ as a doublet of doublet $(J=4.93$ and 11.19 Hz$)$. Additionally, the carbon NMR spectrum of $\mathbf{1 5}$ showed 12 resonances ($\mathrm{C}-\mathrm{OH}$ shift: 70.45 ppm). All these findings are in good agreement with the structure of $\mathbf{1 5}$. Additionally, two products were obtained in 8% yield, which can not be identified clearly. We speculated that these products may be similar to 1-hydroxy-3-phenylcycloocta-2-ene according to the NMR studies (${ }^{13} \mathrm{C}$ Shifts:($\mathrm{C}-\mathrm{OH}$), $\delta 77.03$ and 75.83$)$).
B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..

Scheme 2

2-Phenyl-1,3-cyclooctadiene (9) was one of the major products. The formation of $\mathbf{9}$ can be explained by the elimination of HBr from the allylic bromides $\mathbf{4}$ and $\mathbf{6}$ in the reaction medium or during the chromatography. The other 1,3-diene $\mathbf{1 0}$ can be formed from 5 in a similar way (Scheme 2).

The structures of $\mathbf{9}$ and $\mathbf{1 0}$ were determined on the basis of spectral data. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{9}$ and $\mathbf{1 0}$ showed the olefinic proton $\left(\mathrm{H}_{1}\right)$ of $\mathbf{9}$ at $\delta 6.03 \mathrm{ppm}$ as a triplet ($J=8.15 \mathrm{~Hz}$.) and of $\mathbf{1 0}$ the olefinic proton $\left(\mathrm{H}_{2}\right)$ at $\delta 6.14$ as a doublet $(J=7.79$ Hz). Furthermore, twelve resonances in ${ }^{13} \mathrm{C}$ NMR spectra for each compound were in a good agreement with the structures of 9 and $\mathbf{1 0}$.

The other 1,3-dienes, $\mathbf{1 1}$ and $\mathbf{1 2}$ which contain bromine atom, were isolated in 10% and 8% yield, respectively. We assume that the $\mathbf{1 1}$ and $\mathbf{1 2}$ were formed by the elimination of HBr from the allylic dibromides $\mathbf{7}$ and $\mathbf{8}$, respectively, in the reaction medium or during the chromatography (Scheme 3).

In addition, $\mathbf{1 1}$ was also synthesized by the rearrangement of $\mathbf{1 6}$ with pyridine and AgClO_{4}. It was reported ${ }^{8,9}$ that the 2-halo-1,3-dienes were obtained by rearrangement of the dihalocarbene adducts with pyridine. For this reason, in two separate experiments

[^1]1-phenyl-8,8-dibromobicyclo[5.1.0]octane $\mathbf{1 6}$ was reacted with pyridine and AgClO_{4}, respectively. In both cases, $\mathbf{1 1}$ was isolated as the sole product and not even a trace of $\mathbf{1 2}$ was detected in these reactions (Scheme 4).

The compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ were easily distinguished from the NMR spectra. The proton NMR spectra of $\mathbf{1 1}$ and $\mathbf{1 2}$ showed the olefinic protons of $\mathbf{1 1}$ at $\delta 6.48 \mathrm{ppm}(J=$ $8.3 \mathrm{~Hz})$ and at $\delta 6.20 \mathrm{ppm}$ as a triplet $(J=8.28 \mathrm{~Hz})$, and of the $\mathbf{1 2}$ at $\delta 6.41$ as a singlet and at $\delta 6.03 \mathrm{ppm}$ as a triplet $(J=8.25 \mathrm{~Hz})$. Additionally, the carbon NMR spectra showed twelve signals for each compound. All these findings supported the purposed structures of $\mathbf{1 1}$ and $\mathbf{1 2}$.

The formation of products $\mathbf{1 3}$ and $\mathbf{1 4}$ is surprising. The formation of $\mathbf{1 3}$ can reasonably be explained by the intermediacy of the radical 18, which is formed by the abstraction of the α-hydrogen relative to bromine in $\mathbf{4}$ with bromine radical. The radical 18 converts into radical 19 with π-bond shift. The abstraction of hydrogen of $\mathbf{1 9}$ from HBr in the reaction medium leads to the formation of $\mathbf{1 3}$ (Scheme 5).

Scheme 5

Furthermore, benzylic and allylic bromides give the corresponding alcohols by the hydrolysis in the presence of Ag^{+}salts. ${ }^{10}$ Additionally, it is known that the geminal dibromides can be converted into the corresponding ketones by hydrolysis with $\mathrm{SiO}_{2}{ }^{7}$ and/or Ag^{+}salt.
B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..

Thus, to further support of the formation of allylic dibromides 4-8, the mixture of compounds obtained from the reaction of $\mathbf{3}$ with NBS was let to react with AgClO_{4}. NMR studies have indicated that the resulting reaction mixture was very complex and consisted of at least seven products. However, ${ }^{13} \mathrm{C}$ NMR spectrum showed that the two of them were α, β-unsaturated ketones 20 and 21 ($\mathrm{C}=\mathrm{O}$ shifts: $\delta 200.91,200.66 \mathrm{ppm}$ and $\mathrm{C}=\mathrm{C}$ shifts: $\delta 163.35$ and 161.46 ppm , characteristic for α, β-unsaturated ketones), one of them was alcohol $\mathbf{1 5}$ (C-OH shift: $\delta 70.45 \mathrm{ppm}$), and the others were $\mathbf{9}$ and $\mathbf{1 3}$. This mixture was submitted to silica gel column chromatography. After repeated column chromatography, we isolated compounds $\mathbf{9}, \mathbf{1 3}$, and $\mathbf{1 5}$. But we could not separate the α, β-unsaturated ketones $\mathbf{2 0}$ and $\mathbf{2 1}$ as sufficiently pure. Even a trace of the $\mathbf{2 2}$ was not detected in this reaction (Scheme 6).

The formation of $\mathbf{2 0}$ and $\mathbf{2 1}$ can be explained by the hydrolysis of $\mathbf{7}$ and $\mathbf{8}$ in the presence of Ag^{+}(Scheme 7).

B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..

As the compound $\mathbf{6}$ contains both benzylic and allylic bromine atom, we estimated that the cation 24 was easily formed by removal of the bromine atom in $\mathbf{6}$. As the cation 24 is very stable, it can easily be converted to 2 -phenyl-1,3-cyclooctadiene (9) by removal of proton (Scheme 8).

Scheme 8

Conclusions

Five allylic bromides 4-8 were primarily formed in the reaction of $\mathbf{3}$ with NBS. An attempt to isolate these compounds which are moisture and heat sensitive, led instead to the formation of new compounds $\mathbf{9 - 1 2}$. The formation of these can be explained by the elimination of HBr from the allylic bromides $\mathbf{4 - 8}$. Compound 15 was formed by the addition OH to the allylic system $\mathbf{4}$ whereas compounds 20 and 21 were formed by the hydrolysis of $\mathbf{7}$ and $\mathbf{8}$ in the presence of Ag^{+}. In addition, we isolated the vinyl bromide 13 and saturated dibromide 14. Similar rearrangements have been reported in literature. ${ }^{11}$

Experimental

All solvents were dried and distilled by standard procedures. Compound $\mathbf{1 8}$ was synthesized by the literature procedure. ${ }^{10}$ Infrared spectra were obtained from films on NaCl plates of solutions $\left(\mathrm{CCl}_{4}\right)$ in 0.1 mm cell on a Jasco FT/IR-430 Spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 200 (50) MHz Varian and 400 (100) MHz Bruker WP-200 Spectrometers, and we reported δ units with TMS as an internal standard. All column chromatographies were performed on silica gel (60 mesh, Merck). The elemental analyses were carried out on a CHNS-932 (LECO) analyzer.

1-Phenylcyclooctene (3). To a stirred $\mathrm{Mg}(0.95 \mathrm{~g}, 39.68 \mathrm{mmol})$ in 25 mL dry tetrahydrofuran (THF) at room temperature bromobenzene 2 mL and a small amount of I_{2} were added. The mixture was treated to a solution of bromobenzene $(6.23 \mathrm{~g}, 39.68$ $\mathrm{mmol})$ in THF (15 mL) over 2 h at $65^{\circ} \mathrm{C}$ and stirred for 1 h . then it was cooled to room

[^2]temperature Cyclooctanone $\mathbf{1}(5 \mathrm{~g}, 39.68 \mathrm{mmol})$ was added into this mixture and stirred for 3 h . The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined organic extracts were washed with water (300 mL), and dried over MgSO_{4}. The evaporation of the solvent ($30^{\circ} \mathrm{C}, 20 \mathrm{mmHg}$) gave alcohol $2(7.40 \mathrm{~g}, 90 \%)$. To 50 mL of a stirred solution of $2(7.49 \mathrm{~g}, 36.27 \mathrm{mmol})$ in benzene was added 4 -toluenesulfonic acid $(p-\mathrm{TsOH})(50 \mathrm{mg})$ and the mixture was refluxed for 3 h . The reaction mixture was washed with water $(50 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed and the crude product was filtered through a short silica gel column with n-hexane. Evaporation of the solvent gave $3(4.0 \mathrm{~g}, 60 \%)$ as a colurless liquid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{t}, 1 \mathrm{H}, J 8.28 \mathrm{~Hz}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H})$, 1.47 (m, 6H). ${ }^{13} \mathbf{C}$ NMR, ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.66,140.73,128.68$ (2C), 128.41, 126.91, 126.25 (2C), 30.50, 29.97, 28.97, 27.93, 27.43, 26.67. IR ($\left(\mathrm{Cl}_{4}\right)$ v 3072, 3055, 3024, 2925, 2850, 1597, 1493, 1473, 1448, 1355, 1282, 1072, 1022, 937, 898, 843, 764, $696 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18}$: C 90.26, H 9.74. Found: C 90.30, H 9.76.

Reaction of 1-phenylcyclooctene (3) with NBS. A mixture of $\mathbf{3}(1 \mathrm{~g}, 5.4 \mathrm{mmol})$, N-bromosuccinimide ($0.95 \mathrm{~g}, 5.40 \mathrm{mmol}$), AIBN (20 mg), and $\mathrm{CCl}_{4}(20 \mathrm{~mL})$ was heated at reflux for 5 h , cooled, and filtered to remove succinimide. The filtrate was washed with water (20 mL) and dried over CaCl_{2}. The solvent was removed under reduced pressure. The residue $(1.46 \mathrm{~g})$ was chromatographed on silica gel (60 g) eluted with n-hexane. The first fraction: 2-phenyl-1,3-cyclooctadiene (9), ($180 \mathrm{mg}, 18 \%$), colorless liquid. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{t}$, $1 \mathrm{H}, J 8.15 \mathrm{~Hz}), 5.94(\mathrm{~d}, 1 \mathrm{H}, J 11.3 \mathrm{~Hz}), 5.88(\mathrm{dt}, 1 \mathrm{H}, J 7.04$ and 11.30 Hz$), 2.22(\mathrm{~m}$, 2H), $2.14(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 141.51, 137.07, 133.98, 129.07, 128.65 (2C), 127.32, 126.99, 126.88 (2C), 28.96, 28.85, 24.63, 22.88. IR ($\left(\mathrm{CCl}_{4}\right) ~ v 3078,3055,3005,2952,2850,1497,1492,1442,1077,1022,918,862$, $781,696,523 \mathrm{~cm}^{-1}$ Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16}$: C 91.25, H 8.75. Found: C 91.22, H 8.77.

The second and third fraction consisted of a mixture of 10, $\mathbf{1 1}$ and 12. This mixture was chromatographed on silica gel, eluted with hexane. The first: 1-Phenyl-1,3cyclooctadiene (10), ($100 \mathrm{mg}, 10 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~m}, 5 \mathrm{H}), 6.14$ (d, 1H, J 7.79 Hz), $5.87(\mathrm{dd}, 1 \mathrm{H}, J 7.52$ and 10.88 Hz), $5.66(\mathrm{dt}, 1 \mathrm{H}, J 6.11$ and 11.95 $\mathrm{Hz}), 2.18(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 140.71, 139.97,
B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..
138.11, 138.01, 129.07 (2C), 128.09, 127.68 (2C), 126.37, 30.37, 30.10, 26.33, 24.90. IR ($\left(\mathrm{Cl}_{4}\right)$ v 3080, 3058, 3015, 2958, 2855, 1499, 1494, 1443, 1079, 1021, 916, 864, 783, 697, $525 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16}$: C, $91.25 ; \mathrm{H}, 8.75$. Found: C, $91.23 ; \mathrm{H}, 8.78$. The second: 2-Bromo-3-phenyl-1,3-cyclooctadiene (11), ($140 \mathrm{mg}, 10 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~m}, 5 \mathrm{H}), 6.48(\mathrm{t}, 1 \mathrm{H}, J 8.32 \mathrm{~Hz}), 6.20(\mathrm{t}, 1 \mathrm{H}, J 8.28 \mathrm{~Hz}), 2.41$ $(\mathrm{m}, 4 \mathrm{H}), 1.79(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.27,138.27,134.39,130.36$ (2C), 130.09, 129.58, 129.05 (2C), 121.76, 31.46, 30.41, 25.38, 24.96. IR ($\left.\mathrm{CCl}_{4}\right) \mathrm{v}$ 3078, 3058, 3024, 2923, 2854, 1598, 1494, 1460, 1444, 1111, 972, 787, 752, 698, 638, $559,526 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Br}: \mathrm{C}, 63.89$; H, 5.74. Found: C, 63.87 ; H, 5.76. The third: 2-Bromo-4-phenyl-1,3-cyclooctadiene (12), (110 mg, 8\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~m}, 5 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{t}, 1 \mathrm{H}, J 8.25 \mathrm{~Hz}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.18$ (m, 2H), $1.55(\mathrm{~m}, 4 \mathrm{H}):{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.95,135.14,132.59$, 127.95 (2C), 127.31 (2C), 126.05, 125.90, 124.91, 28.16, 27.13, 26.99, 25.60. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Br}$: C 63.89, H 5.74. Found: C 63.88, H 5.74.

The fourth fraction: 1-bromo-2-phenylcyclooctene (13), ($230 \mathrm{mg}, 16 \%$), colorless liquid. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{t}$, $2 \mathrm{H}, J 5.99 \mathrm{~Hz}$), $2.45(\mathrm{t}, 2 \mathrm{H}, J 5.67 \mathrm{~Hz}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.32,140.34,128.10(2 \mathrm{C}), 128.01$ (2C), 126.85, 122.44, 37.85, 34.98, 28.95, 28.49, 26.67, 26.17. IR (${\left(C l l_{4}\right) ~ v ~ 3080, ~ 3055, ~ 3024, ~ 2923, ~ 2856, ~ 1597, ~}_{\text {, }}$ 1493, 1462, 1442, 1110, 792, 762, 692, 611, $542 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{Br}: \mathrm{C}$ 63.41, H 6.46. Found: C 63.40, H, 6.43.

The fifth fraction: 2-Phenylcyclooct-2-ene-1-ol (15), ($95 \mathrm{mg}, 9 \%$), pale yellow viscous oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{~m}, 5 \mathrm{H}), 5.63(\mathrm{t}, 1 \mathrm{H}, J 8.51 \mathrm{~Hz}), 4.85$ (dd, 1H, J 4.93 and 11.19 Hz), $2.12(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.52,140.55,130.21,128.65$ (2C), 128.49 (2C), $127.33,70.45,39.27,30.52,27.65,27.29,24.75$. IR $\left(\mathrm{CCl}_{4}\right)$ v 3444, 3080, 3049, 3024, 2918, 2856, 1683, 1628, 1597, 1493, 1448, 1352, 1285, 1078, 1071, $758,657 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$: C 83.12, H 8.97. Found: C 83.14, H, 8.97.

The sixth fraction: Other products, $(87 \mathrm{mg}, 8 \%)$, pale yellow viscous oil.
8,8-Dibromo-1-phenylbicyclo[5.1.0]octane (16). To 75 mL of a stirred solution of 1-phenylcycloheptene $(4.00 \mathrm{~g}, 23.25 \mathrm{mmol})$, and potassium t-butoxide $(6.50 \mathrm{~g}, 58.00$ $\mathrm{mmol})$ in hexane a solution of $\mathrm{CHBr}_{3}(14.0 \mathrm{~g}, 55.0 \mathrm{mmol})$ in 25 mL hexane at $0{ }^{\circ} \mathrm{C}$ for

1 h was added. Stirring was continued overnight at room temperature. The reaction mixture was added to 100 mL of water with ice and extracted with hexane $(3 \times 75 \mathrm{~mL})$. The combined extracts were washed with water $(3 \times 50 \mathrm{~mL})$ and dried CaCl_{2}. The solvent was removed under reduced pressure and the residue was crystallized from n-hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1)$, and 16 was obtained as a colorless solid $\left(5.60 \mathrm{~g}, \mathrm{mp} 42-45^{\circ} \mathrm{C}\right.$, $67 \%) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~m}, 5 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}$, $1 \mathrm{H}), 1.82(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(100 \mathrm{MHz}$, CDCl_{3}) $\delta 145.19,131.56,130.10(2 \mathrm{C}), 128.97(2 \mathrm{C}), 49.65,44.94,40.99,39.52,33.78$, 31.48, 29.96, 27.97. IR (KBr) v 3080, 3055, 3024, 2917, 2886, 1602, 1493, 1454, 1443, 1103, 974, 788, 750, 702, 640, 559, $522 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Br}_{2}$: C 48.87, H 4.69. Found: C 48.88, H 4.67.

Reaction of 16 with pyridine. A mixture of $16(0.50 \mathrm{~g}, 1.45 \mathrm{mmol})$ and pyridine (10 mL) was heated at reflux for 1 h , cooled and added to 50 mL of water. The mixture was washed with $\mathrm{Et}_{2} \mathrm{O}$ washed with dilute $\mathrm{HCl}(150 \mathrm{~mL}, 1 \%)$ and water (100 mL), and dried over CaCl_{2}. The solvent was removed under reduced pressure, and the residue was chromatographed on silica gel, eluted with hexane. Compound $\mathbf{1 1}$ was obtained in the yield of 45%.

Reaction of 16 with $\mathbf{A g C l O}_{4}$. To 20 mL of a stirred solution of $\mathbf{1 6}(0.50 \mathrm{~g}, 1.45 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(9: 1) \mathrm{AgClO}_{4}(0.30 \mathrm{~g}, 1.45 \mathrm{mmol})$ was added. The mixture was refluxed overnight, filtered and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel, eluted with hexane. 2-Bromo-3-phenyl-1,3-cyclooctadiene (11) was obtained in the yield of 12%. The same reaction was also carried out with dioxane/ $\mathrm{H}_{2} \mathrm{O}$ at reflux temperature and $\mathbf{1 2}$ was obtained in the yield of 25%.

Reaction of 3 with NBS and $\mathbf{A g C l O}_{4}$. A mixture of $\mathbf{3}(1 \mathrm{~g}, 5.4 \mathrm{mmol})$, N-bromosuccinimide ($0.95 \mathrm{~g}, 5.4 \mathrm{mmol}$), AIBN $(20 \mathrm{mg})$, and $\mathrm{CCl}_{4}(20 \mathrm{~mL})$ was heated at reflux for 5 h , cooled, and filtered to remove succinimide. The filtrate was washed with water (20 mL) and dried over CaCl_{2}. The solvent was removed under reduced pressure. The crude product (1.40 g) was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL}, 9: 1)$, and

[^3]added $\mathrm{AgClO}_{4}(1.30 \mathrm{~g}, 6.28 \mathrm{mmol})$. The mixture was heated at $30{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was filtered and dried over MgSO_{4}. After removal of the solvent, the crude product was chromatographed on silica gel column eluted with hexane/ CHCl_{3} (9:1).

The first fraction: 2-Phenyl-1,3-cyclooctadiene (9), (210 mg, 21\%), colorless liquid. The second fraction: 1-Bromo-2-phenylcyclooctene (13), ($160 \mathrm{mg}, 12 \%$), colorless liquid. The third fraction: 2-Phenylcyclooct-2-ene-1-ol (15), (190 mg, 18\%), pale yellow viscous oil. The fourth fraction: Other products, ($160 \mathrm{mg}, 15 \%$), pale yellow viscous oil.

Acknowledgements

The authors are indebted to the department of chemistry (Gaziosmanpaşa University) for financial support of this work (Grant Nr. 2001/25 University Research Fund). Furthermore, we thank to the department of chemistry (Atatürk University) for 200 MHz NMR spectra and TUBITAK for 400 MHz NMR Spectrometers and Elemental Analysis.

References

1. N. A. Petasis, M. A. Patane, Tetrahedron 1992, 48, 5757-5821.
2. L. A. Paquette, Tetrahedron 1975, 31, 2855-2883.
3. G. I. Fray, R. G. Savton, The Chemistry of Cyclooctatetraene Derivatives; Cambridge University Press; Cambridge, 1978.
4. L. A. Paquette, T. J. Watson, D. Friedrich, J. Org. Chem. 1993, 58, 776-778.
5. (a) M. Ceylan, Y. Budak, J. Chem. Research (M) 2002, 9, 937-946. (b) M. Ceylan, Y. Budak, J. Chem. Research (S) 2002, 9, 416-419.
6. A. Daştan, M. Balcı, T. Hökelek, D. Ülkü, O. Büyükgüngör, Tetrahedron 1994, 35, 10555-10578.
7. A. Daştan, Y. Taşkesenligil, F. Tümer, M. Balcı, Tetrahedron 1996, 52, 14005-14020.
8. W. E. Parham, R. W. Soeder, J. R. Throckmorton, K. Kunel, R. M. Dodson, J. Am. Chem. Soc. 1965, 87, 321-323.
9. W. E. Parham, R. J. Sperley, J. Org. Chem., 1967, 32, 926-931.
10. M. Ceylan, Y. Budak, J. Chem. Research (S) 2001, 9, 368-369.
11. J. S. Pizey, Synthetic Reagents; Vol. II, Chapter 1, Ellis Horwood: Chichester, 1974.

Povzetek

Reakcija 1-fenilciklooktena (3) z NBS je dala zmes produktov (4-8). S kolonsko kromatografijo smo izolirali vinil bromid 14 in 1,3-diena 9,10 , bromo-1,3-diena 11, $\mathbf{1 2}$ in alilni alkohol 15. Reakcija zmesi 4-8 z AgClO_{4} je dala spojine $9,14,15$ in α, β-nenasičena ketona 21 in 22.
B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..

[^0]: B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..

[^1]: B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..

[^2]: B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..

[^3]: B. Büyükkıdan, İ. G. Budak, M. Ceylan: Reaction of Cycloocten-1-ylbenzene With NBS. Synthesis of..

